LECTURE 3 - SIMPLICIAL SETS

Definition 1. A simplicial set K is a sequence of sets K_n , $n \geq 0$, and functions $d_i:K_n\to K_{n-1}$ and $s_i:K_n\to K_{n+1}$ for $0\le i\le n$ that satisfies

$$d_i \circ d_j = d_{j-1} \circ d_i$$
, if $i < j$

$$d_i \circ s_j = \begin{cases} s_{j-1} \circ d_i & \text{if } i < j \\ id, & \text{if } i = j \text{ or } i = j+1 \\ s_j \circ d_{i-1}, & \text{if } i > j+1 \end{cases}$$

$$s_i \circ s_j = s_{j+1} \circ s_i$$
, if $i \leq j$.

We define the category Δ of finite ordered sets.

Definition 2. The objects of Δ are the finite ordered set $[n] = \{0, \ldots, n\}$. Its morphisms are the nondecreasing functions $\mu:[m]\to[n]$. Define particular nondecreasing functions

$$\delta_i : [n-1] \to [n] \text{ and } \sigma_i : [n+1] \to [n]$$

for $0 \le i \le n$ by

$$\delta_i(j) = \begin{cases} j & \text{if } j < i \\ j+1 & \text{if } j \ge i \end{cases}$$

and

$$\sigma_i(j) = \begin{cases} j & \text{if } j \leq i \\ j-1 & \text{if } j > i. \end{cases}$$

In other words, δ_i skips i and σ repeats i.

Proposition 3. Every nondecreasing function $\mu:[m] \to [n]$ can be written as a composite of δ_i and σ_j for varying i and j.

Proposition 4. The category of simplicial sets can be identified with the category of (covariant) functors

$$K: \Delta^{op} \to \mathscr{S}et$$

and natural transformations between them.

Definition 5. A simplicial object in a category $\mathscr C$ is a contravariant functor K: $\Delta \to \mathscr{C}$. These functors and natural transformations between them forms the simplicial category $s\mathscr{C}$. Any functor $F:\mathscr{C}\to\mathscr{D}$ induces a functor $sF:\mathscr{C}\to\mathscr{D}$.

Dually, a covariant functor $\Delta \to \mathscr{C}$ is called a *cosimplicial object* in \mathscr{C} .

We have "standard simplices" in many categories, including topological spaces, simplicial sets, and even posets and categories. Those can be encoded by a standard cosimplicial object in \mathcal{V} , written by a covariant functor

$$\Delta[\bullet]^v:\Delta\to\mathscr{V}.$$

The superscript v is used to distinguish these standard cosimplicial objects in different categories.

For each object V in \mathscr{V} , we obtain a contravariant functor, denoted $SV : \Delta \to \mathscr{S}et$, by letting the set S_nV of n-simplices be the set $\mathscr{V}(\Delta[n]^v, V)$. In other words, we have a functor

$$(1) S: \mathcal{V} \to s \mathscr{S}et.$$

Example 6. When $\mathscr{V} = \mathscr{U}$ is the category of topological spaces, then the functor S is exactly the singular complex. We construct $S_nX = \operatorname{Map}(\Delta[n]^t, X)$ where $\Delta[n]^t$ is the standard topological n-simplex.

Now we consider the case $\mathscr{V} = s\mathscr{S}et$.

Definition 7. Define the standard simplicial n-simplex $\Delta[n]^s$ to be the contravariant functor $\Delta \to s \mathscr{S}et$ represented by [n]. This means that the set $\Delta[n]_q^s$ of q-simplices is

$$\Delta[n]_q^s = \Delta([q], [n]).$$

The object $\Delta[\bullet]^s$ is a cosimplicial simplicial set, that is, a cosimplicial object in the category of simplicial sets.

Proposition 8. Let K be a simplicial set. For $x \in K_n$, there is a unique map of simplicial sets $Y(x) : \Delta[n]^s \to K$ such that $Y(x)(\iota_n) = x$. Therefore

$$K_n \cong s \mathscr{S}et(\Delta[n]^s, K).$$

Proof. This is a direct application of the Yoneda lemma.

Next we consider the case $\mathcal{V} = s\mathcal{C}at$ and define the Nerve of a category.

Note that a poset can be viewed as a category with at most one arrow between any pair of objects: either $x \leq y$ and then there is a unique arrow $x \to y$, or $x \not\leq y$ and then there is no arrow from x to y. We can use this fact to define the standard cosimplicial object in $s\mathscr{C}at$.

Definition 9. We define a covariant functor

$$\Delta[\bullet]^c:\Delta\to s\mathscr{C}at$$

by sending the ordered set [n] to the corresponding category [n] and sending a morphism $\mu:[m]\to[n]$ to the corresponding functor $\mu_*:[m]\to[n]$. Thus $\Delta[\bullet]^c$ is a cosimplicial category.

We use this cosimplicial category and apply (1) to construct the nerve of a category.

Definition 10. Let \mathscr{C} be a small category. We define a simplicial set $N\mathscr{C}$, called the nerve of \mathscr{C} . Its set $N_n\mathscr{C}$ of *n*-simplices is the set of covariant functors $\phi: [n]^c \to \mathscr{C}$. The function $\mu^*: N_n\mathscr{C} \to N_m\mathscr{C}$ induced by $\mu: [m] \to [n]$ is given by $\mu^*(\phi) = \phi \circ \mu_*$.

The definition can easily be unraveled. The vertices of $N_0\mathscr{C}$ is the set of objects of \mathscr{C} . An *n*-simplex is a choice of *n* composable morphisms

$$c_0 \xrightarrow{f_0} c_1 \xrightarrow{f_1} \cdots \xrightarrow{f_n} c_n.$$

The faces and degeneracies are given by

$$d_i(f_1,\ldots,f_n) = (f_1,\ldots,f_{i-1},f_{i+1}\circ f_i,f_{i+2},\ldots,f_n)$$

and

$$s_i(f_1, ..., f_n) = (f_1, ..., f_{i-1}, id, f_i, ..., f_n)$$

Some authors may choose to reverse the arrows to define the nerve so that we can write $f_i \circ f_{i+1}$ instead of $f_{i+1} \circ f_i$.

The following example is very important.

Definition 11. Let G be a group regraded as a category with a single object * and Hom(*,*) = G. The nerve NG is often written as B_*G and called the bar construction. It is the simplicial set with $B_nG = G^n$, with n-tuples of elements written as $[g_1|\cdots|g_n]$.